Research paper

Targeted next generation sequencing of a panel of autismrelated genes identifies an *EHMT1* mutation in a Kleefstra syndrome patient with autism and normal intellectual performance

István Bock^a, Krisztina Németh^b, Klára Pentelényi^c, Péter Balicza^c, Anna Balázs^b, Mária Judit Molnár^c, Viktor Román^d, József Nagy^e, György Lévay^f, Julianna Kobolák^a, András Dinnyés^{a,} ♣⋅ <u>►</u>

Received 7 June 2016, Revised 5 September 2016, Accepted 16 September 2016, Available online 17 September 2016

Show less

https://doi.org/10.1016/j.gene.2016.09.027

Get rights and content

Highlights

- We developed a NGS-based workflow to screen for syndromic causes of autism.
- A pathogenic, de novo mutation was found in an autistic patient with dysmorphisms.
- The mutation leads haploinsufficiency of EHMT1 mRNA and causes Kleefstra syndrome.
- A DPP6 missense variant segregated with the autism within the patient's family
- Multiple genetic factors might contribute to autistic syndromes of KS patients.

a BioTalentum Ltd., Gödöllő, Hungary

^b Autism Foundation, Budapest, Hungary

^C Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary

d Laboratory of Neurodevelopmental Biology, Gedeon Richter Plc., Budapest, Hungary

e Laboratory of Molecular Cell Biology, Gedeon Richter Plc., Budapest, Hungary

f Laboratory of Cognitive Pharmacology, Gedeon Richter Plc., Budapest, Hungary